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Abstract

The Weizsäcker-Williams (WW) method of virtual quanta is used to make
approximate cross section calculations for peripheral relativistic heavy-ion col-
lisions. We calculated the Coulomb Þssion cross sections for projectile ions of
208Pb and 209Bi with energies of 158 A GeV interacting with a 208Pb target.
We also calculated the electromagnetic absorption cross section for a 208Pb ion
interacting as described. For comparison we use both the full WW method and
a standard approximate WW method. The approximate WW method resulted
in larger cross sections compared with the more accurate full WW method.

1. Introduction

An important process neglected in the transport codes FLUKA (refs. 1 and 2) and
MCNPX (ref. 3) is nuclear electromagnetic dissociation (refs. 4-8). When two nuclei
collide, with an impact parameter less than or equal to the sum of the radii, they break
up due to the strong forces. However, if the impact parameter is greater than the sum of
the nuclear radii then breakup can occur via the electromagnetic (EM) interaction. This is
especially important for few-nucleon removal (including neutrons) and for medium nuclei
such as Aluminum or Iron. The few-nucleon EM removal cross sections can be larger
than strong interactions cross sections (ref. 5). The EM interaction also leads to large
Þssion cross sections (refs. 6 and 7) and double EM processes lead to a copious amount of
electron-positron production (ref. 4) with cross sections in the kilobarn region. FLUKA
and MCNPX include none of these processes.

The transport code HZETRN uses the nuclear fragmentation code NUCFRG (ref.
9), which contains a description of high energy nucleus-nucleus collisions in terms of a
modiÞed abrasion-ablation model. An advantage of NUCFRG is that it contains code for
nuclear break up due to both the strong and electromagnetic interactions (ref. 8).

None of the above three transport codes include electromagnetic dissociation cross
sections leading to few-nucleon removal or Þssion. The present paper continues the study
of relativistic Coulomb Þssion (refs. 6 and 7) with a view to including Coulomb Þssion
cross sections in future versions of transport codes.

There are two basic mechanisms that can induce Þssion for relativistic heavy-ion col-
lisions. The predominant mechanism is nuclear Þssion. This is the case when the per-
pendicular distance between ion centers as they pass each other, the impact parameter b,
is less than the sum of the ions� radii. Another mechanism is due to the electromagnetic
interactions between the ions. This is the case when b becomes greater than the sum
of the radii of the two ions and it is called Coulomb Þssion (ref. 7). The objective of
this study is to calculate the Coulomb Þssion cross sections for 208Pb and 209Bi ions at



158 A GeV interacting with a stationary 208Pb target using the full Weizsäcker-Williams
(WW) method and an approximate WW method. We will verify the Coulomb Þssion and
the electromagnetic absorption cross section calculations of Abreu et al. (ref. 10) based
on the approximate WW method that they used. We will be using their notations and
conventions.

2. The Equivalent Photon Approximation

The Equivalent Photon Approximation, also known as theWeizsäcker-Williams Method
of Virtual Quanta (ref. 11), is a classical computational scheme based upon a plane wave
approximation to radiation that is Lorentz contracted in the direction of motion and con-
centrated normal to that direction. The original idea came from Fermi in 1924 (ref. 12).
It was then extended independently by Williams in 1934 (ref. 13) and Weizsäcker in 1934
(ref. 14). Consider the target ion, B, from the reference frame of the projectile ion, A.
The stationary target has an apparent velocity toward the projectile ion. As the speed
of closure approaches that of light, the target�s now electromagnetic (motional induced
magnetic) Þeld can be modeled as plane wave radiation or as an equivalent swarm of
virtual photons. We view the collision in cylindrical coordinates centered on the target
where the projectile trajectory is parallel to the axis but offset by the impact parameter,
b. The target ion�s electric Þeld is Lorentz contracted in the longitudinal direction along
the axis and concentrated with respect to the circular radial direction. Accordingly, the
photon radiation from the target can be replaced by two radiation pulses, P1 and P2.
Pulse P1 has the concentrated electric Þeld perpendicular to the motion and pulse P2 has
the longitudinal electric Þeld.

The Weizsäcker-Williams method uses a function, N(E), that represents the number
of virtual photons with energy E in the radiation pulses per unit energy. This number
spectrum can be written as an integral over the impact parameter plane as

N(E) =

! ∞

bmin

N(E, b)2πbdb (1)

where bmin is the minimum impact parameter. The argument in equation (1) can be
written in terms of the contributions from the two pulses P1 and P2 for a point ion (ref.
11) as

N(E, b) =
αZ2ξ2

π2β2b2E

"
K1(ξ)

2 +
1

γ2
K0(ξ)

2

#
(2)

where α = e2

!c (the QED Þne structure constant), ξ = Eb
γβc! , β =

v
c
, γ is the Lorentz

contraction factor, Z is the number of positive charges in the ion, and Kn(ξ) are modiÞed
Bessel functions of the second kind of order n. Equation (2) gives the number of virtual
photons (quanta) with energy E = !ω at transverse position b from the target ion per
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unit energy per unit area as seen by the projectile ion traveling at speed v. Note that
as the speed v → c, then 1

γ
→ 0. In this limit the second term in equation (2) can be

dropped.

The integration of equation (1) can be performed by using the modiÞed Bessel differ-
ential equation with relations for the Þrst derivatives of the modiÞed Bessel functions of
the second kind. The resulting expression becomes

N(E) =
2αZ2

πβ2E

$
xK0(x)K1(x)− x

2β2

2

%
K1(x)

2 −K0(x)
2&' (3)

where x = ξbmin
b

= Ebmin
γβc! . Notice in equation (3) that the contribution from the second

pulse P2 is multiplied by a factor of
1
γ2
, which is hidden in the β2 = 1 − 1

γ2
coefficient.

When β → 1 as v → c, the contribution from the second pulse vanishes.

The process we are interested in is the Coulomb Þssion cross section of the projectile
ion A, which breaks up as it passes the target ion B in the peripheral collision. This total
cross section can be written using the notation of reference 10 as

σ
Cf
A =

! Emax

Emin

NB(E)σ
γf
A (E)dE (4)

where σγfA (E) represents the microscopic photoÞssion cross section, C indicates Coulomb,
f Þssion, and γ a single photon process. Equivalently, equation (1) can be substituted
into equation (4) to Þnd

σA
Cf =

! ∞

bmin

2πbdb

! Emax

Emin

NB(E, b)σ
γf
A (E)dE (5)

which gives another form for the total Coulomb Þssion cross section.

3. The PhotoÞssion Cross Section

The photoÞssion cross sections σγfA (E) for A = 208 lead and A = 209 bismuth pro-
jectile ions were constructed according to reference 10. Graphical functions for these
photoÞssion cross sections in the photon energy range from 20 MeV to 240 MeV were
found in reference 15. However, the overall semilog graphical functions for the energy
range from 100 MeV to 1000 MeV were found in reference 16. For calculations, we took
photoÞssion points every 20 MeV in photon energy E. These functions are represented
by the semilog point graphs in Þgure 1 for 208Pb and in Þgure 2 for 209Bi.

We extrapolated the photoÞssion graphs by linear extensions of the semilog points to
2000 MeV according to reference 10. The extrapolations are designed to capture the total
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cross section results found in reference 10 when the approximate WW method of equation
(9) is used. By reproducing their results we established photoÞssion cross sections similar
to those found in reference 10. To see how sensitive the total cross section calculation
is to the particular extrapolation used we considered three cases with point indicators in
comparison with reference 10: circle (high), square (similar), and diamond (low) as shown
in Þgures 1 and 2.

Figure 1 shows our points for the photoÞssion cross section of 208Pb with three extrap-
olations beyond 1000 MeV. Figure 2 shows our points for the photoÞssion cross section of
209Bi with three extrapolations beyond 1000 MeV. The middle extrapolations with square
or similar point indicators result in Coulomb Þssion cross sections that compare well with
those reported in reference 10.

4. Calculation of the Coulomb Fission Cross Section

The calculations of the Coulomb Þssion cross sections were done using a simple ex-
tended trapezoidal integration scheme. The energy variable E was integrated from 20
MeV to 2000 MeV. The number of points used for the microscopic photoÞssion cross
section was 100. The energy interval was 20 MeV to accommodate this range. The mimi-
mum impact parameter for both collisions, Pb-Pb and Bi-Pb, was chosen to be bmin = 15
fm to correspond with the value used by reference 10. Note the maximum photon energy
occurs at bmin and is given by Emax =

γ!βc
bmin

.

We calculated cross sections using the full WW method by substituting equation
(3) into equation (4) and integrating numerically as described with a standard modiÞed
Bessel function routine. We calculated cross sections using the approximate WW method
by dropping the second term in equation (2). This is the contribution from the radiation
pulse P2 that is associated with the longitudinal electric Þeld. This is equivalent to
assuming v = c or that β = 1. The resulting expression contains the modiÞed Bessel
function K1(ξ)

2. According to the asymptotic behavior of this function, the approximate
expression can be split between a low photon energy and high photon energy expression.
These energy approximations (ref. 10) are represented by

NB(E, b) # ZB
2α

π2β2b2E
(6)

for the low energy approximation E $ γ!βc
b
and

NB(E, b) # ZB
2α

2πγβ2b
exp

(−2Eb
γ!βc

)
(7)

for the high energy approximation E % γ!βc
b
.
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Following reference 10 we used the low energy approximation of equation (6) and set
NB(E, b) = 0 for energies E ≥ γ!βc

b
. That is, we only integrate up to the cutoff photon

energy. Substituting equation (6) into equation (5), this approximation to the full WW
method gives the Coulomb Þssion cross section as

σ
Cf
A =

2ZB
2α

πβ2

! Emax

Emin

σ
γf
A (E)

dE

E

! γ!βc
E

bmin

db

b
(8)

Intergrating over the impact parameter b results in

σ
Cf
A =

2ZB
2α

πβ2

! Emax

Emin

σ
γf
A (E) ln

(
γ!βc
Ebmin

)
dE

E
(9)

Equation (9) was used to do the approximate WW numerical calculations corresponding
to those of reference 10.

Table 1 shows a comparison between our results and those of reference 10 for 208Pb and
209Bi beam ions interacting with a 208Pb target. Column 1 gives the projectile ion; column
2 gives the results of reference 10. Our approximate calculations using equation (9) are
shown in column 5. For 208Pb the calculation based on the similar type extrapolation of
Þgure 1 gives 380 mb, which is comparable to the Coulomb Þssion cross section calculated
by reference 10. For 209Bi the calculation based on the similar type extrapolation of Þgure
2 gives 450 mb, which is comparable to the value calculated in reference 10. Calculations
using equation (9) based on the extrapolations represented by circle and diamond are,
respectively, higher and lower, when compared with those of reference 10. Convergence
was checked by varying the number of integration points.

The experimental Coulomb Þssion cross section of 649 mb, shown in table 1, is our
calculation based on reference 10. They calculated an expected yield of Coulomb Þssion
events per incident 208Pb ion of 0.9 × 10−2. The reference 10 calculation included the
contributions of the isotopes 208Pb, 207Pb, and 206Pb, which were integrated through
the 12-mm thickness of the target. It was assumed that all the isotopes had the same
Coulomb cross section of 380 mb. From the expected yield it is necessary to subtract off
an 18-percent estimated correction for nuclear reinteraction of the Þssion fragments inside
the target. However, the observed yield of Coulomb Þssion events per incident 208Pb ion
was (1.26± 0.16)× 10−2 (from NA50 experiment at CERN SPS). Adjusting the observed
yield number to before the 18-percent correction for nuclear reinteraction would be about
1.536 × 10−2, which is associated with an experimental cross section. This experimental
Coulomb Þssion cross section becomes (1.536

0.9
)380 mb ≈ 649 mb.
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Table 1. Comparison of Coulomb Fission Cross Sections
Ion Ref. 10 Based Figs. 1 & 2 Approx. WW, mb Full WW, mb

A Calc., mb on Exp., mb σγfA (E) Eq. (9) Eq. (3) in Eq. (4)
208Pb Circle 395 331
208Pb 380 649 Square 380 315
208Pb Diamond 361 296
209Bi Circle 454 372
209Bi 450 Square 450 369
209Bi Diamond 448 368

According to reference 10 the expected yield of Coulomb Þssion events per incident
208Pb ion after subtraction of an 18-percent correction for Þssion fragments is about
0.75 × 10−2, which is about 40 percent lower than the observed yield. Based on our
more accurate, full WW calculations for the Coulomb Þssion cross section for the 208Pb
projectile of 315 mb shown in table 1, the revised calculated yield becomes (315

380
)(0.9 ×

10−2)(1.00− 0.18) ≈ 0.61× 10−2. This is now about 52 percent below the observed yield
of 1.26× 10−2.
5. Calculation of the Electromagnetic Absorption Cross Section

The electromagnetic absorption (abs) cross section is calculated by replacing the
photoÞssion cross section σ

γf
A (E) with the photoabsorption cross section σ

γabs
A (E) in the

previous equations. We constructed a rough log-log point graph of this absorption cross
section for 208Pb from a graph found in reference 17 as shown in Þgure 3. Table 2 shows
our results in comparison with reference 10. Column 3 data compare well with that of
column 2, which are also based on equation (9). The full WW method shown in column
4 results in a lower cross section.

Table 2. Electromagnetic Absorption Cross Section
Ion Ref. 10 Approx. WW, b Full WW, b
A Calc., b Eq. (9) Eq. (3) in Eq. (4)

208Pb 50 49 44

Integration of equations (4) and (9) was done over Þve photon energy ranges due to
the form of our log-log graph for the absorption cross section: from 6 MeV to 20 MeV
with an energy increment of 1 MeV; from 20 MeV to 200 MeV with an energy increment
of 10 MeV; from 200 MeV to 300 MeV with an energy increment of 20 MeV; from 300
MeV to 1000 MeV with an energy increment of 100 MeV; and from 1000 MeV to 2000
MeV with an energy increment of 200 MeV. We used the same trapezoidal integration
scheme and convergence check as that discussed in section 4.
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6. Discussion

The reason that the full WW method results in smaller Coulomb Þssion cross section
compared with the approximate WW method is due to the slight difference in the respec-
tive WW number spectrums as shown in Þgure 4. The N(E)s match at low values and
high values of E, but through the central energy range the full WW number spectrum is
offset lower than the approximate WW number spectrum.

The calculated expected yield of Coulomb Þssion events per incident 208Pb projectile
ion was reported to be 40 percent lower than the experimentally observed yield in refer-
ence 10. This was based upon their calculated Coulomb Þssion cross section of 380 mb.
However, with our more accurate cross section of 315 mb, the discrepancy becomes worse:
52 percent lower for the calculated yield versus the observed yield. For an experimentally
based effective cross section of about 649 mb, this implies that the physics of the Pb-Pb
interaction is still not understood.

The key to application of the WW method is the theoretical or experimentally based
photonuclear cross section. Our photoÞssion cross sections of Þgures 1 and 2 are re-
constructions from inferred cross sections based on experimental electron-induced Þssion
cross sections (ref. 16). After 1000 MeV we used linear semilog extrapolations up to 2000
MeV. Why the 208Pb graph is rising and the 209Bi graph is decreasing at 1000 MeV would
reßect the nature of the Þssion for these nuclei.

The choice of bmin has an important effect on the resulting cross section. Smaller num-
bers for bmin result in larger cross sections. In order to avoid inducing strong interactions
bmin = RA + RB. We used 15 fm for the minimum impact parameter, the value used
in reference 10. We also looked at values of bmin based on other methods (refs. 4, 18,
and 19). These methods resulted in about the same discrepancy as reported previously.
Calculations using bmin according to the Wood-Saxon method (refs. 20 and 21) resulted
in larger cross sections, however, not large enough to remove the discrepancy.

The interference between nuclear and Coulomb forces is expected to be small because
of the different distance behavior of the forces: the Coulomb force being weak and long
range and the nuclear force being strong and short range. (This is discussed in ref. 18,
where they show that the interference is small.) Thus, the question over the discrepancy
between the calculated expected yield per Coulomb Þssion event and the experimentally
observed yield remains open. However, because of previous excellent agreement with
theory and experiment, we suspect that the solution of the disagreement lies with the
complicated and approximate procedure used to extract the experimental cross sections.
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Figure 1. Photofission cross section for 
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Figure 2. Photofission cross section for 

 

209

 

Bi.
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Figure 3. Photoabsorption cross section for 
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Figure 4. Comparison of the full (solid line) and approximate (dashed line) WW number spectrums per unit
energy.
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